
Common diseases of a chronic inflammatory
nature such as asthma, Alzheimer disease, and
cardiovascular disease are complex in nature,
as they are variably influenced by genetic
inheritance as well as environmental, physical,
and lifestyle factors. Although genetic variants
and their interactions probably define most
interindividual variability in common disease
susceptibility related to genetics (Moore 2003;
Newton-Cheh and Hirschhorn 2005), they
generally possess low or incomplete pene-
trance and consequently show low-risk associ-
ations in epidemiologic studies [e.g., odds
ratios (ORs) ~ 1.5–2] (Hirschhorn et al. 2002;
Lohmueller et al. 2003). Thus, for genetic
variants to significantly affect disease severity
or incidence, they must act cumulatively.
Applying the composite genetic contribution
to the risk assessment process would allow for
identifying the most genetically susceptible
groups in the population. In light of this, a
multiplicative gene–gene interaction model
was developed to allow for estimating the
combinatorial contribution of multiple
genetic variants to disease risk. To illustrate
the utility of this model, asthma was selected
as an example of a common multifactorial

disease as the pathological processes have been
well established and a number of genetic vari-
ants that influence the disease have been iden-
tified in association studies. Data were
compiled from 14 genetic association studies
linking 16 susceptibility variants in inflamma-
tory, immune, and chemical metabolism
genes to the risk of developing disease. Our
model predicts that a broad heterogeneity
exists in the population disease risk defined by
genetic variation. The broadened risk profile is
amenable, however, to segregating the popula-
tion by relative risk level, which should allow
for identification of the most susceptible pop-
ulations. The current limitations and assump-
tions of this approach, which include lack of
joint distributions, limited information on
epistasis and the influence of other potential
variables, such as exposure, are discussed.

Materials and Methods 

Study design. Population-based genetic associ-
ation studies deal with relatively small effects
against a complex background. Therefore,
association studies are often statistically under-
powered and poorly standardized. General
concerns include a lack of attention to

sampling and study design, inconsistent
criteria for clinical assessment, population
stratification, the use of genetic markers that
are only modestly correlated with disease, and
publication bias. Considering these concerns,
we extracted data from a public database
(PubMed 2004) using the terms “asthma,”
“polymorphism,” and “gene.” We included
studies that followed standard asthma diagno-
sis criteria (physician-diagnosed asthma), used
case–control study design, and described asso-
ciations with p-values < 0.05 in the analyses to
help limit potential false positive associations.
The genetic variants we selected were not
intended to be an exhaustive list of published
variants of candidate genes that have been
associated with asthma but rather representa-
tive of those in which significant associations
have been repeatedly observed, known to
cause changes in protein expression, and act
through established pathways for allergic
response (Blumenthal 2005; Malerba and
Pignatti 2005). As reflected in the published
literature, most of the variants included in the
analyses are associated with increased risk for
developing asthma rather than decreased risk.
Hence, we included only one variant that is
considered protective. 

Although published genetic association
studies have used a variety of methods for pre-
senting results, we selected disease-associated
variant genotypes as opposed to allele frequen-
cies, as the relationship of the latter to disease
has not been clearly defined. Most of the
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BACKGROUND: Incorporating the influence of genetic variation in the risk assessment process is
often considered, but no generalized approach exists. Many common human diseases such as
asthma, cancer, and cardiovascular disease are complex in nature, as they are influenced variably by
environmental, physiologic, and genetic factors. The genetic components most responsible for dif-
ferences in individual disease risk are thought to be DNA variants (polymorphisms) that influence
the expression or function of mediators involved in the pathological processes. 

OBJECTIVE: The purpose of this study was to estimate the combinatorial contribution of multiple
genetic variants to disease risk. 

METHODS: We used a logistic regression model to help estimate the joint contribution that multiple
genetic variants would have on disease risk. This model was developed using data collected from
molecular epidemiology studies of allergic asthma that examined variants in 16 susceptibility genes. 

RESULTS: Based on the product of single gene variant odds ratios, the risk of developing asthma was
assigned to genotype profiles, and the frequency of each profile was estimated for the general popula-
tion. Our model predicts that multiple disease variants broaden the risk distribution, facilitating the
identification of susceptible populations. This model also allows for incorporation of exposure infor-
mation as an independent variable, which will be important for risk variants associated with specific
exposures.

CONCLUSION: The present model provided an opportunity to estimate the relative change in risk
associated with multiple genetic variants. This will facilitate identification of susceptible populations
and help provide a framework to model the genetic contribution in probabilistic risk assessment. 
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genes and chromosomal regions that have
been associated with disease are linked to
chromosomes 5q, 11q, 12q, and 6p. We strat-
ified candidate genes into three groupings
based on their role in the pathogenesis of
asthma. The first group (12 variants) included
genes related to inflammation and immune
cascades known to be involved in allergic
asthma, such as the interleukin 4 (IL-4) recep-
tor variant R567. The second group consisted
of atopy-associated gene variants contained
within the human leukocyte antigen (HLA)
class II family. The third grouping consisted
of variants associated with chemical metabo-
lism, represented by the N-acetyltransferase
(NAT) polymorphism associated with slow

acetylation. The genes and variants used in the
analyses are presented in Table 1. 

Statistical model. We modeled the single-
gene variants listed in Table 1 as binary out-
comes and generated polygenotypes from
single-gene genotypes using a recursive bino-
mial scheme. Under this scheme all possible
permutations of single-gene polymorphisms are
considered, and the total number of polygenic
profiles is 2n, where n is the number of genes
used in the analysis (sixteen in the present
study). We estimated the frequencies of the
genotype profiles from single-gene frequencies
as a product of epidemiologically derived single-
gene frequencies. Susceptibility to disease was
expressed in terms of ORs. Polygenetic ORs

were calculated from single-gene ORs under
the assumption of genetic independence
(absence of linkage disequilibrium); that is, for
each variant, the enrichment or depletion of
cases with that variant does not affect the fre-
quency of any other variant. Therefore, single-
gene frequencies multiply to estimate the
frequency of polygenotypes. The model we
proposed also assumes that the selected genes
are biologically independent and thus, no epis-
tasis at the level of protein function is consid-
ered. Thus, we used a logistic regression model
without interaction cross-terms. This results in
a multiplicative OR for a polygenotype in
which the combinatorial genotype OR is gen-
erated simply by multiplying individual ORs
for the variants that are present for a specific
genotype profile. 

Results

ORs obtained from 16 genetic variants reported
to be associated with allergic asthma were used
to estimate the contribution of genetic variation
in disease risk. Each possible genotype in the
population was assigned a categorical binary
variable representing either the wild-type (0) or
the variant (minor) genotype (X) identified
from each of the selected studies. Thus, each
possible combination can be represented as a
16-dimensional profile where, for instance,
{XXXXXXXXXXXXXXXX} denotes a geno-
type profile that contains only minor variants.
We obtained the frequency for each profile
from the reported frequencies in each original
study (Table 1). Control frequencies from each
study were reported to be consistent with those
found in the general population with similar
ethnicities. Figure 1 summarizes the relation-
ship between the frequency of each of the
65,536 (216) potential genotypic profiles and
risk of developing allergic asthma under the
described model and illustrates the concept that
susceptibility variants can shift the risk distribu-
tion to the right or left depending upon
whether the variant has an adverse or protective
role, respectively. The various genotype profiles
represented in Figure 1 are enriched with those
genotypes that increase the risk of asthma, thus
accounting for the right-sided skew in the scat-
terplot. The arrow in this diagram indicates the
location of the wild-type genotype profile
{OOOOOOOOOOOOOOOO} with its
associated OR of 1. It is evident that the fre-
quency and magnitude of risk are highly corre-
lated, such that very high-risk genotypes are
exceedingly rare in the population and, in fact,
the highest risk polygenotype is so rare that it is
unlikely to even exist. The genotypes that have
an OR < 1 are due to the inclusion of the pro-
tective –627 polymorphism in the inter-
leukin 10 (IL-10) gene (Hang et al. 2003),
which reduces the overall risk for developing
asthma. The right-sided skew shown in
Figure 1 is consistent with current evidence that
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Table 1. Genes related to immune/inflammatory processes and environmental/occupational exposures
in asthma.

Gene (Entrez Gene ID)a Variation Frequency OR (mean) p-Value Reference

Group I (immune, inflammatory)
TGF-β (7040) –509 0.117 2.456 0.0102 Silverman et al. 2004
TLR-10 (81793) 2322 0.034 2.237 0.0235 Lazarus et al. 2004
TNF-α (7124) –308 0.223 1.505 0.0444 Witte et al. 2002
MCP-1 (6347) –2518 0.089 2.703 0.0055 Szalai et al. 2001
IL-13 (3596) –1055 0.019 7.756 0.0081 van der Pouw Kraan et al. 1999
CD-14 (929) –159 0.098 3.143 0.0355 Woo et al. 2003
IL-18 (3606) 105 0.109 1.830 0.0068 Higa et al. 2003
IL-10 (3586) –627 0.289 0.278 0.0222 Hang et al. 2003
RANTES (6352) –28 0.219 2.233 0.0006 Yao et al. 2003
IL-4R (3566) R576 0.018 8.185 0.0429 Rosa-Rosa et al. 1999
ACE (1636) Ins/del 0.160 4.472 0.0018 Gao et al. 2000
FcεRIβ (2206) E237G 0.252 2.155 0.0003 Cui et al. 2003

Group II (atopy)
HLA-DQA1 (3117) 0301 0.081 8.774 0.0010 Aron et al. 1996
HLA-DQB1 (3119) 0302 0.083 6.794 0.0039 Aron et al. 1996
HLA-DRB1 (3123) 4 0.026 24.588 0.0023 Aron et al. 1996

Group III (metabolism)
NAT1 (9) Slow/fast 0.250 8.625 0.0059 Wikman et al. 2002

Ins/del, insertion/deletion
aGene loci and gene identification numbers are from Entrez Gene (2006).
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Figure 1. Frequencies and ORs of genotypes in a control population calculated using 16 gene variants
listed in Table 1. Each point represents a unique genotype combination. Referent genotype profile is identi-
fied by the arrow (OR = 1). Genotypic profile composed of all minor variants is identified by the circle.



the vast majority of identified variants have
been associated with an adverse rather than pro-
tective contribution (Ober and Hoffjan 2006).
It is not known whether these variants are evo-
lutionarily driven or because adverse variants
are more actively studied and identified than
those that are protective. 

Examination of a single susceptibility gene
can separate the study population into only
two risk groups, those with and those without
the mutation. In contrast, modeling the impact
of multiple disease variants associated with
immune and inflammatory mediators of aller-
gic asthma (group 1 variants) provides a
pseudo-continuous log-normal relative disease
risk distribution in the population (Figure 2A).
Inclusion of variants associated with atopy
(Figure 2B) and acetylation rate (Figure 2C)
further shifts the distribution toward the
higher risk. Equally evident is the impact of
combining variants on the standard deviation
of disease risk in the population. As we added
more disease variants to the model, the risk dis-
tribution broadened, allowing better distinc-
tion of the population into high and low risk
categories. The frequencies associated with
such risk levels will be important in defining
susceptible populations that need increased
protection with respect to exposure, as well as
for risk management. 

The present model provided an opportu-
nity to quantify the relative change in risk asso-
ciated with the presence of genetic variants in
the general population. This is exemplified in
Figure 3 where the dashed gray line represents
the risk profile for the most common genotypes
modeled from the 12 asthma susceptibility

genes (group 1 variants) and the solid blue line
shows the risk profile when the NAT1 variant is
added. These curves indicate that in individuals
carrying the NAT1 mutation, the risk of
asthma increases approximately 2-fold or more
in 20% of the possible polygenotypes present in
a population of workers exposed to diiso-
cyanates. Acetylation rate is thought to affect
the metabolism of diisocyanates, which in turn
correlates with differences in diisocyanates-
induced asthma rates (Wikman et al. 2002). If
only those variants common to allergens (first
group) are considered, one would estimate that
20% of the population would have at least
6-fold increase susceptibility relative to the ref-
erent genotype profile. Thus, this model allows
for incorporation of exposure information as an
independent variable, illustrating why variants
such as those involved in atopy or chemical
metabolism, would need to be included sepa-
rately in identifying the number of individuals
in a population at increased risk.

Discussion

We used a logistic regression model to estimate
the joint contribution of multiple genetic vari-
ants on the risk of developing allergic asthma.
Allergic asthma data sets were used because dis-
ease prevalence is relatively high—estimated to
be approximately 7.5% (range, 5.2–10.3%)
among the U.S. population (Mannino et al.
2002)—and the pathological processes as well as
many of the disease mediators have been iden-
tified (Barrios et al. 2006). The latter allowed
for an additional level of confidence in that
the genetic variants selected for modeling are
associated with well-established pathological

processes. Although data sets from other com-
mon polygenic diseases may have sufficed, such
as Alzheimer or cardiovascular disease, their
pathological processes are less well defined. 

Single-genotype ORs provided by genetic
association studies is the available input to
model the polygenotype–disease association.
ORs are functions of the logistic regression
coefficients. Thus, the logistic regression model,
which is commonly used in epidemiology stud-
ies, provides a straightforward approach for
combining single genotype ORs to model the
combinatorial genotype ORs (Kleinbaum and
Klein 2002). However, the accuracy of this
model to capture true polygenic susceptibility
remains to be determined. Currently, our labo-
ratory in conjunction with a National Institute
for Occupational Safety and Health–funded
multicenter asthma genotype program (RO1
OH008795-01) centered at the University of
Cincinnati is collecting data on multiple vari-
ants in a single population to help establish the
validity of this model.

A major limitation of using a multiplica-
tive interaction model to derive polygenic risk
from single-gene studies is that epistatic rela-
tionships are not considered. Although the
model assumes there is no statistical interac-
tion, it does not account for potential biologi-
cal interactions at the protein level that may
modify risk. For example, epistasis likely plays
a role in determining complex phenotypes
such as allergic asthma. However, epistatic
relationships can be generated only from
efforts to genotype functional variants in all
potential target genes in a single population.
This presents a potential problem because the

A polygenic approach to assessing risk 
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Figure 2. Distribution of relative disease risk calcu-
lated using asthma-associated gene variants
grouped by their biological attribution: (A) 12 group I
variants only; (B) with three group II variants added
to A; (C) with group III variant added to B.
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Figure 3. The low end of cumulative distribution of ORs calculated using asthma-associated genetic vari-
ants (Table 1). The dashed gray line corresponds group I variants; the solid blue line represents risk distri-
bution following addition of the group III variant.
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population frequency of polygenotypes is
generated from the product of single-gene
frequencies, making complex polygenotypes
very rare. Therefore, as the number of genes
increases, the number of individuals required
in order to estimate polygenic risk markedly
increases, thereby necessitating the need for a
modeling approach. This is especially true for
occupational populations, given the low num-
ber of employees exposed to a given occupa-
tional allergen and the even lower incidence of
disease. It is possible that the effects of epista-
sis in multifactorial diseases are relatively mod-
est. For example, a recent epidemiologic study
of breast cancer demonstrated that only 17%
of three gene combinations showed statistical
evidence of epistasis (Aston et al. 2005). More
simple schemes to help define epistasis may
involve interactions derived from genomic and
proteomic data, which can allow for decoding
transcriptional and posttranscriptional interac-
tion networks (Johnson et al. 2004). As more
reliable biological and epidemiologic informa-
tion regarding joint effects and epistasis
becomes available, new patterns of interaction
can be added to the model, which will allow
for more accurate risk estimates. 

Genetic independence is another assump-
tion when using this model. Linkage disequi-
librium is the deviation from probabilistic
independence between alleles at two different
loci. This deviation from independence can
have different causes, such as a lack of inde-
pendent segregation or recombination, or
any number of other evolutionary forces.
Therefore, an association of a certain genetic
marker with disease may reflect the etiologic
role of the locus of interest but not of the
marker itself. Since a multiplicative approach
for the joint effects of genotypes between loci
was assumed in this model, only the gene vari-
ants known not to be in linkage disequilibrium
were considered. 

The choice of mode of inheritance (allelic
or genotypic) used for analyses can have a
marked impact on risk estimates. Most genetic
association studies reduce three genotypes to
two by using recessive (assuming heterozygotes
have no increased risk), co-dominant (a per-
allele effect that places heterozygotes halfway
between minor and major homozygous geno-
types), or dominant genetic models (in which
heterozygotes have the same increased risk as
minor homozygous genotypes). However,
some studies ignore the heterozygotes and
compare only minor and major homozygous
genotypes. Because the biological function of
the variations is rarely known, it is difficult to
determine the mode of inheritance. As indi-
cated by Minelli et al. (2005), if the assump-
tion of genetic model is in doubt, then the best
approach would be to perform joint pair-wise
comparison, that is, genotype associations.
Therefore, using the disease-associated variant

genotypes identified in the individual studies as
opposed to decomposing the population into
allele frequencies is an appropriate approach to
capture and model the impact of multiple vari-
ants. As biological data regarding the inheri-
tance modes of variants become available, a
biologically justified strategy for incorporating
each susceptibility variant can be applied. 

In conclusion, the increased risk for devel-
oping a multifactorial disease based upon dis-
ease-susceptibility variants with moderate
effects was estimated using a logistic regression
model assuming multiplicative gene–gene
interactions. Although limited by our current
lack of knowledge regarding the role of
gene–gene and gene–environment interactions
in multifactorial common diseases, such a
model, without interaction cross-terms, is the
first step in the development of a comprehen-
sive polygenic risk model. These types of analy-
sis can provide information on the relative
changes in risk associated with genetic variabil-
ity found inherently in the population and
help provide a framework to model the genetic
contribution in probabilistic risk assessment.
Such information may also provide opportuni-
ties for targeting preventative or therapeutic
actions to high-risk populations. In a broader
context, the polygenic model for genetic sus-
ceptibility contributes to the design of a virtual
toxicology testing laboratory, which would
help to reduce animal testing and adverse
human exposures. With rapid advances in the
identification of genetic variants in the popula-
tion, underscored by the Human Genome and
HapMap Projects (The International HapMap
Consortium 2003; Pennisi 2001), advances in
high throughput genotyping methodology and
improved understanding of the molecular
events involved in disease processes, key sus-
ceptibility polygenotypes driving risk for
common complex diseases may be identified. 
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